

HAPS & satellite integration in 4G/5G cellular networks

Didier Verhulst

HAPS4ESA Conference Leiden - 14th February 2019

Cellular & (pseudo) Satellite technologies

Cellular coverage from HAPS airship

> Using a stationary **HAPS** like Stratobus

> Serving mobile handsets directly

- 4G (and soon 5G) services
- Using cellular frequencies (UHF, S band, etc.)

"4G/5G Base Station in the sky"

Unlike satellites, HAPS can communicate directly with standard broadband smartphones

- > An airship HAPS like Stratobus will be capable to carry a complete set of 4G/5G base station components
 - adapted from a terrestrial cellular COTS baseband server
 - adapted from a terrestrial cellular COTS active array antenna
 - with high power (5000 W) & weight (250 kg) (case of Stratobus)

> With two main benefits:

- The system serves many cells from a **single control point**:
 - Implementing advanced interference mgt & performance optimization
- From a 20 km altitude, the **service range can be quite large**, well beyond the usual terrestrial limits
 - Broadband coverage can reach at least 200 km (in UHF): one HAPS replacing ~50 terrestrial base stations (w. typical 30 km rural coverage)
 - The range is further extended with IoT services (CatM1, Narrowband IoT)

4G / 5G (terrestrial beam) forming principles

4G/5G baseband & active active antenna

The baseband software performs beamforming assuming (virtual) static antennas

The active antenna provides coherent aperture and flexible 3D antenna virtualization

Proposed HAPS coverage in S band (~2.1 GHz)

The system carries an active array S-band antenna on board

• flat panel antenna

20 km

~1 m

36 km

> Implementing dynamic beam forming

- to improve throughput and minimize outage
- to compensate HAPS mobility

> To provide "medium density" coverage

- to a distance of 30 to 60 km
 - Higher range means reduced capacity
- System capacity is under evaluation
 - accounting for 5G Massive MIMO
 - with dynamic adaptation to various traffic profiles

HAPS movement compensation

4G terrestrial low density rural coverage

> Typical LTE cell range for 1 Mbps downlink

Proposed HAPS coverage in UHF band (~700 MHz)

> The system can carry an active array UHF-band antenna

> The system can implement dynamic beam forming

- to improve range & throughput and to minimize outage
- and to compensate HAPS mobility

> to provide "low density" wide coverage

• 3Mbps broadband services up to a distance of 200 km

Range 200 km

• wider coverage for low bit rate IoT services

4G/5G link budget adaptation & extended range

Extended range up to 200 km

HAPS movement compensation

Extended range

Satellite and HAPS contribution to 5G

ell & sa

Satellite and HAPS contribution to 5G

Satellite and HAPS contribution to 5G

Broadband cellular coverage : using Satellite & HAPS

Satellite & HAPS complementarity

- HAPS (airship, solar planes, loons) will be natural complement to GEO, MEO, (V)LEO satellites
 - "Pseudo" satellites with reduced CAPEX and (relatively) easy to deploy
 - They can provide local fixed & mobile capacity
 - They can support low latency services (much better than LEO's)

> HAPS can also be seen as extension to terrestrial networks

- They can support "base station in the sky" providing spot capacity and offering wide cellular coverage in low density areas
- They can share frequency spectrum with terrestrial cellular networks – Provided regulatory clearance ... and with interference control mechanisms
- They should become integral components of 5G "Non Terrestrial Networks"
- HAPS payload design will benefit from large scale technology development in 5G terrestrial networks
- The HAPS remaining challenges are many economical: Total Cost of Ownership (CAPEX + OPEX) vs satellite & vs terrestrial

www.cell-sat.com

February 2019

Page 18